Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clin Immunol ; 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20239943

ABSTRACT

PURPOSE: Myocardial injury is common in hypertensive patients with 2019 coronavirus disease (COVID-19). Immune dysregulation could be associated to cardiac injury in these patients, but the underlying mechanism has not been fully elucidated. METHODS: All patients were selected prospectively from a multicenter registry of adults hospitalized with confirmed COVID-19. Cases had hypertension and myocardial injury, defined by troponin levels above the 99th percentile upper reference limit, and controls were hypertensive patients with no myocardial injury. Biomarkers and immune cell subsets were quantified and compared between the two groups. A multiple logistic regression model was used to analyze the associations of clinical and immune variables with myocardial injury. RESULTS: The sample comprised 193 patients divided into two groups: 47 cases and 146 controls. Relative to controls, cases had lower total lymphocyte count, percentage of T lymphocytes, CD8+CD38+ mean fluorescence intensity (MFI), and percentage of CD8+ human leukocyte antigen DR isotope (HLA-DR)+ CD38-cells and higher percentage of natural killer lymphocytes, natural killer group 2A (NKG2A)+ MFI, percentage of CD8+CD38+cells, CD8+HLA-DR+MFI, CD8+NKG2A+MFI, and percentage of CD8+HLA-DR-CD38+cells. On multivariate regression, the CD8+HLA-DR+MFI, CD8+CD38+MFI, and total lymphocyte count were associated significantly with myocardial injury. CONCLUSION: Our findings suggest that lymphopenia, CD8+CD38+MFI, and CD8+HLA-DR+MFI are immune biomarkers of myocardial injury in hypertensive patients with COVID-19. The immune signature described here may aid in understanding the mechanisms underlying myocardial injury in these patients. The study data might open a new window for improvement in the treatment of hypertensive patients with COVID-19 and myocardial injury.

2.
Diagnostics (Basel) ; 12(11)2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2090033

ABSTRACT

Kidney injury is an important outcome associated with COVID-19 severity. In this regard, alterations in urinary extracellular vesicles (uEVs) could be detected in the early phases of renal injury and may be reflective of the inflammatory process. This is an observational study performed with a case series of COVID-19 hospitalized patients presenting mild-to-critical disease. Total and podocyte-derived uEVs were identified by nanoscale flow cytometry, and urinary immune mediators were assessed by a multiplex assay. We studied 36 patients, where 24 (66.7%) were considered as mild/moderate and 12 (33.3%) as severe/critical. Increased levels of total uEVs were observed (p = 0.0001). Importantly, total uEVs were significantly higher in severe/critical patients who underwent hemodialysis (p = 0.03) and were able to predict this clinical outcome (AUC 0.93, p = 0.02). Severe/critical patients also presented elevated urinary levels (p < 0.05) of IL-1ß, IL-4, IL-6, IL-7, IL-16, IL-17A, LIF, CCL-2, CCL-3, CCL-11, CXCL-10, FGFb, M-CSF, and CTAcK. Lastly, we observed that total uEVs were associated with urinary immune mediators. In conclusion, our results show that early alterations in urinary EVs could identify patients at higher risk of developing renal dysfunction in COVID-19. This could also be relevant in different scenarios of systemic and/or infectious disease.

3.
J Clin Med ; 11(13)2022 Jun 27.
Article in English | MEDLINE | ID: covidwho-1911429

ABSTRACT

Cardiovascular comorbidities and immune-response dysregulation are associated with COVID-19 severity. We aimed to explore the key immune cell profile and understand its association with disease progression in 156 patients with hypertension that were hospitalized due to COVID-19. The primary outcome was progression to severe disease. The probability of progression to severe disease was estimated using a logistic regression model that included clinical variables and immune cell subsets associated with the primary outcome. Obesity; diabetes; oxygen saturation; lung involvement on computed tomography (CT) examination; the C-reactive protein concentration; total lymphocyte count; proportions of CD4+ and CD8+ T cells; CD4/CD8 ratio; CD8+ HLA-DR MFI; and CD8+ NKG2A MFI on admission were all associated with progression to severe COVID-19. This study demonstrated that increased CD8+ NKG2A MFI at hospital admission, in combination with some clinical variables, is associated with a high risk of COVID-19 progression in hypertensive patients. These findings reinforce the hypothesis of the functional exhaustion of T cells with the increased expression of NKG2A in patients with severe COVID-19, elucidating how severe acute respiratory syndrome coronavirus 2 infection may break down the innate antiviral immune response at an early stage of the disease, with future potential therapeutic implications.

SELECTION OF CITATIONS
SEARCH DETAIL